
Linked Structures

Labs 3, 4, and 5 all build structures dynamically, one block at a time.
This is a very useful programming technique, but it is one where you
can get into a lot of trouble with sloppy coding. I can’t emphasize
enough how important it is to draw pictures of the structures you
create. You should always have pen and paper with you when you
are doing this kind of coding. Professional programmers , even
people who have been doing this for years, draw pictures to go with
their code. If you can make your pictures work, writing code to go
with your pictures is easy.

Consider a simple Person class, where people have names and friends:

public class Person {
String name;
Person friend;

public Person(String name) {
this.name = name;
this.friend = null;

}
…..

}

Don’t be surprised that a Person can have an attribute friend that is also
a Person. Just remember that the friend needs to be constructed. A
friend is not a String “Mary” but a Person whose name is “Mary”.

I am going to represent constructed people by circles.
The code

Person a = new Person(“Abe”);
Person b = new Person(“Bob”);

gives two objects:

“Abe”

a

“Bob”

b

If we then say
a.friend = b;

we get the following picture:

“Abe”

a

“Bob”

b

friend

We could add more people to this. For example
Person c = new Person(“Cat”);
b.friend = c;

will result in

“Abe”

a

“Bob”

b

friend “Cat”

c

friend

Alternatively, we could go from a picture to code.

What would we need to add to our code to produce the following?

“Abe”

a

“Bob”

b

friend “Cat”

c

friend

“Dot”

d

Answer:
Person d = new Person(“Dot”);
d.friend = c;

And this picture?

“Abe”

a

“Bob”

b

friend “Cat”

c

friend

“Dot”

d

Answer: c.friend = a;

Even with this simple Person class we could make some very
complex relationships. This flexibility is what makes this
approach attractive for storing data structures.

Here is the complete code we used to create this structure:

“Abe”

a

“Bob”

b

friend “Cat”

c

friend

“Dot”

d

Person a = new Person(“Abe”);

Person b = new Person(“Bob”);
a.friend = b;
Person c = new Person(“Cat”);
b.friend = c;
Person d = new Person(“Dot”);
d.friend = c;
c.friend = a;

Now let’s think about storing integers. Instead of
Person (with name and friend attributes) we will
make a structure that I call Node (with data and next
attributes):

class Node {
int data;
Node next;

public Node (int data) {
this.data = data;
this.next = null;

}
….

}

I will draw Nodes as rectangles instead of circles. To
save time I will stop labeling my arrows; they all
represent next fields.

Suppose we have the following structure:

45 34 23

What code will turn it into this? The things in red are new:

head

45 34 23

head

56

head

45 34 23

head

56

head

Answer:

Node p = new Node(56);
p.next = head;
head = p;

This is important, so let’s go through it one step at a time.
We start with this:

45 34 23

head

Node p = new Node(56); Does this:

45 34 23

p

56

head

45 34 23

p

56

head

Saying p.next = head; does this; it is just like saying a.friend = b;

45 34 23

p

56

head

Finally, we want variable head to refer to the first node, which is now
variable p. So we say head = p;

45 34 23

p

56

head

45 34 23

head

56

45 34 23

head

56

Okay, let’s do it again. What code will add a node with 65 onto this
structure, producing this?

45 34 2356

head

65

45 34 23

head

56

Answer:
p = new Node(65);
p.next = head;
head = p;

We could make this structure as long as we want. But could we
make it smaller? Could we turn

45 34 23

head

56

into

45 34 23

head

Sure. This code will do it:
Node p = head.next;
head = p;

45 34 23

head

56

Be sure you understand that.
Node p = head.next; does this:

45 34 23

head

56

p

Then head = p; does this:

45 34 2356

p head

It doesn’t matter that there is a box pointing at the box stored in both
p and head. There is no way to access that box; it will eventually be
garbage-collected.

Note that the two statements
Node p = head.next;
head = p;

could be simplified into one:
head = head.next;

So we know how to delete the node at the head of this structure.
Could we delete the node with value 45?

Sure. The idea is to put a pointer p before the node we want to
delete and another pointer q after that node, and then say p.next = q;

45 34 23

head

56

45 34 23

head

56

Here is the code:
Node p = head;

45 34 23

p head

56

Node q = head.next.next;

45 34 23

p head

56

q

45 34 23

p head

56

q

p.next = q;

45 34 23

p head

56

q

Now the linked nodes in the structure go from 56 to 34 to 23.
There is no way to refer to that node containing 45; it will
eventually be garbage-collected.

45 34 23

head

56

Let’s add a node with value 39 between 45 and 34.

The idea is again to get variables pointing at the node before and
the node after the place we want to do the insertion. I will call
those nodes s and u, and the new node t.

45 34 23

head

56

First we set up pointers before and after the point of insertion:
Node s = head.next;
Node u = s.next;

45 34 23

head

56

s u

45 34 23

head

56

s u

Now we make a new box and put 39 in it:
Node t = new Node(39);

45 34 23

head

56

s u

39

t

45 34 23

head

56

s u

39

t

Finally, we adjust the links so s points to t and t points to u:
s.next = t;
t.next = u;

45 34 23

head

56

s u

39

t

Note that we could do this without variable u if we do things in the
right order:

45 34 23

head

56

s

39

t

This works:
t.next = s.next;
s.next = t;

But this doesn’t work:
s.next = t;
t.next = s.next;

After we do the first statement s.next = t; we have the following
picture:

45 34 23

head

56

s

39

t

There is nothing pointing at the end of the list with values 34 and
23; we have lost part of our structure. Using 3 variables is easier.

The moral here is simple: be careful how you code; draw pictures to
guide your code. Don’t try to memorize this code; just work it out
from a picture.

45 34 23

head

56

Now you do it. Starting with this structure:

write code that will remove 34 from the structure. Then write code
that will insert value 51 between 56 and 45.

Here’s how I would do this:
// Remove 34

Node p = head.next;
Node q = p.next.next;
p.next = q;

// Add 51
Node a = head;
Node c = a.next;
Node b = new Node(51);
a.next = b;
b.next = c;

45 34 23

head

56

